
7.7 Sorting and Searching arrays (cont.)

• Lines 29 and 34 demonstrate use binary_search to

determine whether a value is in the array.

• The sequence of values must be sorted in ascending order

first—binary_search does not verify this for you.

• The function’s first two arguments represent the range of

elements to search and the third is the search key—the

value to locate in the array.

• The function returns a bool indicating whether the value

was found.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.8 Multidimensional Arrays

• You can use arrays with two dimensions (i.e., subscripts) to
represent tables of values consisting of information arranged in
rows and columns.

• To identify a particular table element, we must specify two
subscripts—by convention, the first identifies the element’s row
and the second identifies the element’s column.

• Often called two-dimensional arrays or 2-D arrays.

• Arrays with two or more dimensions are known as
multidimensional arrays.

• Figure 7.20 illustrates a two-dimensional array, a.
– The array contains three rows and four columns, so it’s said to be a 3-

by-4 array.

– In general, an array with m rows and n columns is called an m-by-n
array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.8 Multidimensional arrays (cont.)

• Figure 7.20 demonstrates initializing two-
dimensional arrays in declarations.

• In each array, the type of its elements is
specified as

array< int, columns >

• indicating that each array contains as its
elements three-element arrays of int
values—the constant columns has the value
3.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.8 Multidimensional arrays (cont.)

Nested Range-Based for Statements

• To process the elements of a two-dimensional
array, we use a nested loop in which the
outer loop iterates through the rows and the
inner loop iterates through the columns of a
given row.

• The C++11 auto keyword tells the compiler to
infer (determine) a variable’s data type based
on the variable’s initializer value.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.8 Multidimensional arrays (cont.)

Nested Counter-Controlled for Statements

• We could have implemented the nested loop
with counter-controlled repetition as follows:

for (size_t row = 0; row < a.size(); ++row)
{
 for (size_t column = 0; column < a[row].size(); ++column)
 cout << a[row][column] << ' ';
 cout << endl;
} // end outer for

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.9 Case Study: Class GradeBook Using a

Two-Dimensional array

• In most semesters, students take several exams.

• Professors are likely to want to analyze grades across the

entire semester, both for a single student and for the class as a

whole.

• Figure 7.21 shows the output that summarizes 10 students

grades on three exams.

• We store the grades as a two-dimensional array in an object

of the next version of class GradeBook Figures 7.22–7.23.

• Each row of the array represents a single student’s grades for

the entire course, and each column represents all the grades the

students earned for one particular exam.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

