/.7 Sorting and Searching arrays (cont.)

Lines 29 and 34 demonstrate use binary_search to
determine whether a value is in the array.

The sequence of values must be sorted in ascending order
first—binary_search does not verify this for you.

The function’s first two arguments represent the range of
elements to search and the third is the search key—the
value to locate in the array.

The function returns a boo 1 indicating whether the value
was found.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

1 // Fig. 7.18: fig07_18.cpp

2 // Sorting and searching arrays.

3 #include <iostream>

4 #include <iomanip>

5 #include <array>

6 #include <string>

7 #include <algorithm> // contains sort and binary_search
8 using namespace std;

9

10 1int main()

11 {

12 const size_t arraySize = /; // size of array colors
13 array< string, arraySize > colors = { , , ,
14 , , , s

15

16 // output original array

17 cout << :

I8 for (string color : colors)

19 cout << color <<
20
21 sort(colors.begin(), colors.end()); // sort contents of colors
22

Fig. 7.18 | Sorting and searching arrays. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// output sorted array

cout << ;

for (string item : colors)
cout << item << ;

// search for "indigo" in colors

bool found = binary_search(colors.begin(), colors.end(),

cout << << (found ? :)
<< << endl;

// search for "cyan" in colors

found = binary_search(colors.begin(), colors.end(),);
cout << << (found ? :)
<< << endl;

} // end main

Unsorted array:

red orange yellow green blue indigo violet
Sorted array:

blue green indigo orange red violet yellow

"indigo" was found in colors
"cyan" was not found in colors

Fig. 7.18 | Sorting and searching arrays. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.8 Multidimensional Arrays

You can use arrays with two dimensions (i.e., subscripts) to
represent tables of values consisting of information arranged in
rows and columns.

To identify a particular table element, we must specify two
subscripts—by convention, the first identifies the element’s row
and the second identifies the element’s column.

Often called two-dimensional arrays or 2-D arrays.

Arrays with two or more dimensions are known as
multidimensional arrays.
Figure 7.20 illustrates a two-dimensional array, a.

— The array contains three rows and four columns, so it’s said to be a 3-
by-4 array.

— In general, an array with m rows and n columns is called an nm-by-n
array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Column 0 Column | Column 2 Column 3
Rowo afl0]J[0] af[O0][1] af0][2] a[0][3]
Row ! a[1][0] af1][1]1 af11[21 a[1][3]

RowZz a[2][0] af21[1] afl2]J[21 af[2][3]

| T— Column subscript

Row subscript
array name

Fig. 7.19 | Two-dimensional array with three rows and four columns.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 7.5

Q% Referencing a two-dimensional array element
a[x] [y] incorrectly as a[x, y] is an error. Actually,
al[x, y] is treated as a[y], because C++ evaluates the
expression X, y (containing a comma operator) simply
as y (the last of the comma-separated expressions).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.8 Multidimensional arrays (cont.)

* Figure 7.20 demonstrates initializing two-
dimensional arrays in declarations.

* Ineach array, the type of its elements Is
specified as

array< int, columns >

* Indicating that each array contains as Its

elements three-element arrays of int
values—the constant co lumns has the value

3.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

CcCwVwO~NONUNDAWN=

N = o e e e e e
Vv~ WN=

21
22

// Fig. 7.20: fig07_20.cpp

// Initializing multidimensional arrays.
#include <iostream>

#include <array>

using namespace std;

const size_t rows = /;
const size_t columns = °;

void printArray(const array< array< int, columns >, rows> &);

int main(Q)

{
array< array< int, columns >, rows > arrayl = { |, 7, *, 4,
array< array< int, columns >, rows > array2 = { |, /, *, 4,
cout << << endl;
printArray(arrayl);

printArray(array2);
} // end main

Fig. 7.20 | Initializing multidimensional arrays. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

23 // output array with two rows and three columns
24 void printArray(const array< array< int, columns >, rows> & a)
25 {

26 // loop through array's rows

27 for (auto const &row : a)

28 {

29 // loop through columns of current row
30 for (auto const &element : row)

31 cout << element << ;

32

33 cout << endl; // start new line of output
34 } // end outer for

35 1} // end function printArray

Values in arrayl by row are:
123
456

Values in array2 by row are:
123
450

Fig. 7.20 | Initializing multidimensional arrays. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.8 Multidimensional arrays (cont.)

Nested Range-Based for Statements

* To process the elements of a two-dimensional
array, we use a nested loop in which the
outerloop iterates through the rowsand the
/nnerloop Iterates through the co/umns of a
given row.

* The C++11 auto keyword tells the compiler to
infer (determine) a variable’s data type based
on the variable’s initializer value.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

/.8 Multidimensional arrays (cont.)

Nested Counter-Controlled for Statements

* We could have implemented the nested loop
with counter-controlled repetition as follows:

for (size_t row = 0; row < a.size(); ++row)
{
for (size_t column = 0; column < a[row].size(); ++column)
cout << a[row J[column] << " ';
cout << endl;
} // end outer for

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

7.9 Case Study: Class GradeBook Using a
Two-Dimensional array

* In most semesters, students take several exams.

 Professors are likely to want to analyze grades across the
entire semester, both for a single student and for the class as a
whole.

« Figure 7.21 shows the output that summarizes 10 students
grades on three exams.

« \We store the grades as a two-dimensional array in an object
of the next version of class GradeBook Figures 7.22-7.23.

* Each row of the array represents a single student’s grades for
the entire course, and each column represents all the grades the
students earned for one particular exam.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Welcome to the grade book for
(5101 Introduction to C++ Programming!

The grades are:

Test 1 Test 2 Test 3 Average

Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77 .67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77 .33
Student 10 87 93 73 84.33

Fig. 7.21 | Output of GradeBook that uses two-dimensional arrays. (Part | of
2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Lowest grade in the grade book is 65
Highest grade in the grade book is 100

Overall grade distribution:
0-9:

10-19:

20-29:

30-39:

40-49:

50-59:

60-69: =¥

70-79Q: ik

8BO-8Q: wwddkdkdiddd

00-00: Hwdddkdk
R

Fig. 7.21 | Qutput of GradeBook that uses two-dimensional arrays. (Part 2 of
2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19

// Fig. 7.22: GradeBook.h

// Definition of class GradeBook that uses a

// two-dimensional array to store test grades.
// Member functions are defined in GradeBook.cpp
#include <array>

#include <string>

// GradeBook class definition
class GradeBook

{

public:
// constants
static const size_t students = : // number of students
static const size_t tests = 3; // number of tests

// constructor initializes course name and array of grades
GradeBook(const std::string &,
std::array< std::array< int, tests >, students > &);

Fig. 7.22 | Definition of class GradeBook that uses a two-dimensional array to
store test grades. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

